Cross-linguistic perception of Thai tones is shaped by the functional prominence of lexically-contrastive pitch in L1

Vance Schaefer and Isabelle Darcy
Department of Second Language Studies
Indiana University

New Sounds 2013
Montreal, Quebec, Canada
Concordia University
May 17-19, 2013
Tone

- **Tone** languages use variations of voice height = “pitch”, or “F_0” to distinguish words.

- Patterns: LEVEL or CONTOUR
Thai tones

nâ: face falling
nǎ: thick rising
ná: aunt high level
na: rice field mid level
nà: custard apple low level

2 contour tones
3 level tones

Source: Contour shapes of Thai tones in citation form. Representative examples from one speaker. From Zsiga & Nitisaroj, 2007, p. 347
Tone perception by native speakers

◆ Native speakers perceive tones as linguistic categories

◆ Tonal information also constrains lexical access
 Lee, 2007
Tone perception by non-native speakers

◆ Speakers of a tonal language display high accuracy in non-native tone perception
 Wayland & Guion, 2004

◆ Speakers of non-tonal languages have less sensitivity to tonal contrasts than people with previous tonal experience
Do all non-tonal language speakers perform equally in non-native tone perception?

◆ There are differences AMONG non-tonal language speakers in non-native tone perception

e.g., L1 pitch accent speakers perform at comparable accuracy levels to L1 tone language speakers Burnham et al., 1996; So, 2006

◆ Languages differ in the extent and function to which they use F_0 variations:

 - All languages use pitch for intonation at the level of phrases while only some use pitch for distinctions at the word level
Lexically-contrastive pitch usage

- **Tone**
 - e.g., Mandarin Chinese, Thai, Vietnamese

- **Pitch-accent languages**
 - High pitch on the accented mora, determining the pitch level (H or L) of preceding/following moras (+ more rules)
 - e.g., Japanese, Swedish
 - e.g., A-me ‘rain’ (HL) vs a-ME ‘candy’ (LH)

- **Word-stress languages**
 - Pitch variation as one correlate of lexically-contrastive word stress
 - e.g., English, German, Spanish. e.g., REcord vs reCord

- **“Intonation - only“ languages**
 - These languages do not use lexically-contrastive pitch, but like all languages we know of, they use intonation (phrase domain)
 - e.g., Korean, French
Functional scale of pitch contrasts

<table>
<thead>
<tr>
<th>Pitch contrasts</th>
<th>Most systematically linguistic</th>
<th>Least systematically linguistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phonological tone</td>
<td>Thai, Chinese</td>
<td>Syntactic/attitudinal/emotional</td>
</tr>
<tr>
<td>Lexical type</td>
<td>Japanese, English</td>
<td>Korean</td>
</tr>
<tr>
<td>Domain</td>
<td>Segment or syllable</td>
<td>Word/phrase</td>
</tr>
</tbody>
</table>

Adapted from Van Lancker, 1980: 210
Pitch prominence typology and predictions for tone perception accuracy

<table>
<thead>
<tr>
<th>Language</th>
<th>Domain</th>
<th>Prominence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tone (Mandarin)</td>
<td>Lexical, syllable</td>
<td>Maximal</td>
</tr>
<tr>
<td>Pitch-accent (Japanese)</td>
<td>Lexical, word</td>
<td>High-intermediate (pitch is exclusive)</td>
</tr>
<tr>
<td>Word stress (English)</td>
<td>Lexical, word</td>
<td>Low-intermediate (pitch is non-exclusive)</td>
</tr>
<tr>
<td>Intonation-only (Korean)</td>
<td>Non lexical</td>
<td>Low</td>
</tr>
</tbody>
</table>
Pitch prominence typology and predictions for tone perception accuracy

<table>
<thead>
<tr>
<th>Language</th>
<th>Domain</th>
<th>Predicted Sensitivity/Accuracy in tone perception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tone (Mandarin)</td>
<td>Lexical, syllable</td>
<td>Maximal</td>
</tr>
<tr>
<td>Pitch-accent (Japanese)</td>
<td>Lexical, word</td>
<td>High-intermediate (pitch is exclusive)</td>
</tr>
<tr>
<td>Word stress (English)</td>
<td>Lexical, word</td>
<td>Low-intermediate (pitch is non-exclusive)</td>
</tr>
<tr>
<td>Intonation-only (Korean)</td>
<td>Non lexical</td>
<td>Low</td>
</tr>
</tbody>
</table>
Pitch Prominence Hypothesis

◆ Similar predictions are found in previous studies

 ◆ **Feature Hypothesis** McAllister, Flege, & Piske, 2002: L2 perception of Swedish vowel length contrasts by native speakers of Estonian, English, and Spanish

 ◆ Linguistic relevance of a dimension in L1 shapes the brain response to L2 contrasts (with MMN data) Nenonen, Shestakova, Huotilainen, & Näätänen, 2003

 ◆ We predict accuracy of cross-language tone perception based on prominence of pitch in the L1
Prominence predicts accuracy

- **Prominence of contrastive pitch at the word level**
- **None**

Predicted Accuracy

- **Mandarin**
- **Japanese**
- **English**
- **Korean**

Maximal
Methodology
Participants

- N = 2 Thai native speakers
- N = 10 Mandarin speakers
- N = 11 Japanese speakers
- N = 10 English speakers
- N = 10 Korean speakers

- Graduate students
- Generally involved in language studies/linguistics
- Students in the US
AXB categorization

Accuracy rates and reaction times
Experimental conditions

- Monosyllabic words & nonwords presented in triplets (48 „test“, 48 „control“)
- All test words were open syllables
- 3 test conditions:

<table>
<thead>
<tr>
<th>Test Conditions</th>
<th>Control Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction (n=12)</td>
<td>Control (n=48)</td>
</tr>
<tr>
<td>Height (n=12)</td>
<td>consonant</td>
</tr>
<tr>
<td>Mixed (n=24)</td>
<td>vowel</td>
</tr>
<tr>
<td>rising-falling</td>
<td>low-mid</td>
</tr>
<tr>
<td></td>
<td>low-rising</td>
</tr>
<tr>
<td></td>
<td>low-falling</td>
</tr>
<tr>
<td>rising-falling</td>
<td>low-high</td>
</tr>
<tr>
<td></td>
<td>mid-rising</td>
</tr>
<tr>
<td></td>
<td>mid-falling</td>
</tr>
<tr>
<td>rising-falling</td>
<td>mid-high</td>
</tr>
<tr>
<td></td>
<td>high-rising</td>
</tr>
<tr>
<td></td>
<td>high-falling</td>
</tr>
</tbody>
</table>
Results
Accuracy rates in each group

* = significant effect of group

Significant interaction between “group” and “condition”: $F(3, 37) = 11.3, p < .001$

Effect of group is significant for **test condition only**: $F(3, 67.3) = 11.3, p < .001$

Predicted hierarchy of accuracy: Mandarin (M = 87% correct), Japanese (M = 77% correct), English and Korean (M = 67% correct for both).
Reaction times in each group

![Bar chart showing reaction times in different conditions for Thai, Mandarin, Japanese, English, and Korean groups.]

- Interaction was not significant: $F(3, 37) = 2.4, p = 0.08$
Conclusions

☑ Influence of the L1 phonological system

The functional prominence of lexically-contrastive pitch in L1 shapes cross-linguistic perception of Thai tones

◆ Globally, our findings confirm previous results obtained across studies and add strength by allowing a direct comparison with the same methodology
Discussion: Overall performance

◆ Equal accuracy between English and Korean in tone discrimination was not predicted. Why?

◆ Are English “less accurate than expected”?
 – F_0 is rarely used alone to distinguish words in English, perhaps creating the same performance as if F_0 was not used at all to signal lexical contrast (English = Korean)
 - Stress constrains lexical access only to a limited extent in English (Cooper, Cutler & Wales, 2002)
 - By contrast, when F_0 can be used alone to distinguish words, as in Japanese, performance is higher

◆ Are Koreans “more accurate than expected”?
 – Influence of L2 English on Koreans?
 – Exposure to a pitch-accent Kyungsang dialect?
Individual Korean Dialectal Differences
Dialectal boundaries
Lee & Ramsey, 2000

Kyungsang = Gyeongsang
Cholla = Jeolla
Lexical pitch in Korean

◆ Kyungsang listeners show categorical perception of Pitch accent patterns
 Kim & de Jong, 2007; Kim, 2011

◆ Limited advantage in the naïve perception of Japanese pitch accent
 Sukekawa, Choi, Maekawa & Sato, 1995

◆ Emergence of lexical pitch in standard Korean among younger speakers
 Silva, 2006
Pitch accent in Korean Kyungsang dialect

Minimal pairs of 3 lexical accent patterns

a. [moi]: HL vs. LH ‘feed’, ‘conspiracy’

b. [more]: HL vs. HH ‘sand’, ‘the day after tomorrow’

c. [yaŋmo]: LH vs. HH ‘wool’, ‘adoptive mother’

From Kim, 2011; Kim & de Jong, 2007
Predictions

◆ If the L1 phonological system determines accuracy, Kyungsang Korean dialect speakers should outperform non-Kyungsang speakers

◆ We examine individual performance for the Korean group
Korean performance on combined test items

- **Mean accuracy (%)**
 - KRF2
 - KRF7
 - KRM3
 - KRF1
 - KRF6
 - KRF3, Busan
 - KRF4
 - KRM2, KRM1, Jinju

- **Mean RT**
 - KRF2
 - KRF7
 - KRM3
 - KRF1
 - KRF6
 - KRF3, Busan
 - KRF4
 - KRM2, KRM1, Jinju

Legend:
- Yellow: Korean pitch accent
- Blue: Korean non-pitch accent
Korean performance on control items

- Mean RT
- Mean accuracy (%)

Legend:
- Yellow: Korean pitch accent
- Blue: Korean non-pitch accent
Accuracy rates for each Korean subgroup

- We conclude that the Korean group most likely performed “More accurately than expected” because of the dialect differences within that group.
Take home message

☑ Influence of the L1 phonological system - in a narrow sense, i.e. L1 dialect

◆ The functional prominence of lexically-contrastive pitch in L1 shapes cross-linguistic perception

◆ Further support for the Feature Hypothesis (McAllister et al., 2002): Accuracy of perception of non-native phonological dimensions is shaped by the prominence of that dimension in the L1 phonological system

◆ For pitch: Exclusivity and domain size matter to determine prominence
Acknowledgements

Kathleen Bardovi-Harlig
Laurent Dekeydtspotter
Ken De Jong
Stephanie Dickinson
Mariko Kondo
Keiko Kuriyama
Philip LeSourd
Charles Lin
Öner Özçelik
Rex Sprouse
David Stringer
Second Language Psycholinguistics Lab members
SLRF audience
LabPhon audience
SLS seminar classmates
References

References

• Lee, C-Y. (2007). Does Horse Activate Mother? Processing Lexical Tone in Form Priming. Language and Speech, 50(1), 101-123.
References

